QFT I exercises - sheet 7

To be handed in monday 16 th of December @ start of lecture (12:00).

Fun with spinors

a Compute for $k^{2}=0$ and in 4 space-time dimensions

$$
\operatorname{tr}\left(\not p_{1} \gamma^{\mu} \not k \gamma^{\nu} \not p_{2} \gamma_{\nu} \not k \gamma_{\mu}\right)
$$

Hint: $\not k / k=k^{2}=0$
b Show

$$
\begin{aligned}
& \operatorname{tr}\left[\left(\gamma^{\mu} \not k \gamma^{\nu}+2 \gamma^{\mu} p^{\nu}\right)(\not p+m)\left(\gamma_{\nu} \not k \gamma_{\mu}+2 \gamma_{\mu} p_{\nu}\right)\left(\not p^{\prime}+m\right)\right] \\
& \quad=32\left(\left(p^{\prime} \cdot k\right)(p \cdot k)-m^{2}\left(p^{\prime} \cdot k-2 p \cdot k+p \cdot p^{\prime}\right)+2 m^{4}\right)
\end{aligned}
$$

c Show in the chiral representation that the operator $C:=\gamma^{0} \gamma^{2}$ satisfies

$$
C^{2}=a \quad \text { and } \quad C \gamma^{\mu} C=b\left(\gamma^{\mu}\right)^{T}
$$

and compute a and b.
d Show $\operatorname{tr}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \ldots \gamma^{\mu_{n}}\right)=c \operatorname{tr}\left(\gamma^{\mu_{n}} \ldots \gamma^{\mu_{2}} \gamma^{\mu_{1}}\right)$ and compute c. Hint: insert ' $C C^{\prime}$ ' between all gamma matrices.

Scattering $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$in Quantum Electrodynamics

Consider

$$
e^{-}\left(p_{1}\right) \mu^{-}\left(p_{2}\right) \rightarrow e^{-}\left(p_{1}^{\prime}\right) \mu^{-}\left(p_{2}^{\prime}\right)
$$

in the approximation $m_{e}=0$
a Using Feynman graphs, show $\frac{1}{4} \sum_{\text {spins }}|M|^{2}$ equals

$$
\frac{8 e^{4}}{\left(\left(p_{1}-p_{1}^{\prime}\right)^{2}\right)^{2}}\left(\left(p_{1} \cdot p_{2}\right)\left(p_{1}^{\prime} \cdot p_{2}^{\prime}\right)+\left(p_{1} \cdot p_{2}^{\prime}\right)\left(p_{1}^{\prime} \cdot p_{2}\right)-m_{\mu}^{2}\left(p_{1} \cdot p_{1}^{\prime}\right)\right)
$$

to first order in perturbation theory.
b Show that in the center of mass frame this evaluates to

$$
\frac{2 e^{4}}{k^{2}(1-\cos (\theta))^{2}}\left((E+k)^{2}+(E+k \cos (\theta))^{2}-m_{\mu}^{2}(1-\cos (\theta))\right)
$$

for natural center of mass coordinates E, k and θ. (hint: first make a sketch)

Mandelstam variables

For a general scattering process with two incoming massive particles with momenta p_{1} and p_{2} and outgoing massive particles with momenta p_{3} and p_{4} one usually defines so-called Mandelstam variables

$$
\begin{equation*}
s:=\left(p_{1}+p_{2}\right)^{2} \quad t:=\left(p_{3}-p_{1}\right)^{2} \quad u:=\left(p_{4}-p_{1}\right)^{2} \tag{1}
\end{equation*}
$$

Note these momenta obey momentum conservation,

$$
\begin{equation*}
p_{1}+p_{2}-p_{3}-p_{4}=0 \tag{2}
\end{equation*}
$$

a Show that $s+t+u=\sum_{i=1}^{4} m_{i}^{2}$ holds.
b Show that all possible inner products between momenta, i.e. $p_{i} \cdot p_{j}$ can be expressed in the Mandelstam invariants and the four masses m_{i}
c Express the result for $\frac{1}{4} \sum_{\text {spins }}|M|^{2}$ in item a of the previous exercise in terms of Mandelstam invariants in the high energy limit $m_{\mu}^{2}=0$.
d Express $\frac{1}{4} \sum_{\text {spins }}|M|^{2}$ for the $e^{+} e^{-} \rightarrow \mu^{-} \mu^{+}$scattering process obtained in class in terms of Mandelstam invariants as well.
e Which formal operation relates the results for c and d ?

